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Low-Loss Twists in Oversized
Rectangular Waveguide

JOHN L. DOANE, SENIOR MEMBER, IEEE

Abstract—Twists may be required in oversized rectangular waveguide

used for low-loss transmission at the higher microwave and millimeter-wave

frequencies. The unwanted mode conversion in such twists is calculated

here from numerical integration of the coupled mode equations, consider-

ing simultaneous coupling of the five lowest order modes coupled in a

twist. Twists with tapered or linearly varying rates of twist are shown to be

snperior in medium- or broad-band applications tothose with uniform twist

rate, such as those normally made commercially for single-mode wave-

Wide. Some recent applications and designs for oversized rectangular

waveguides are presented in [1].

Measurements consistent with these theoretical calculations are dis-

cussed for uniform twists in WR90 (0.9x 0.4 in.) at 60 GHz and for an

electroformed twist having a linearly tapered rate of twist in WR187

(1.872 x0.872 in.) from 15.7 to 17.7 GHz.

The coupling coefficients needed in the calculations are derived in an

appendk and are compmed with the results of other work, including a

modal expansion of the dominant mode in twisted wavegnide. A second

appendixconsiders the transmission tfrrongh an oversized wavegrride with a

mode converter generating a trapped unwanted mode, and derives the

result for the dependence of the resonance depth on the mode conversion

and the attenuation of the trapped mode.

L INTRODUCTION

o VERSIZED (overmoded) waveguide has been used

occasionally for many years to reduce the ohmic

(wall) losses of smaller do&nant-rnode waveguide. At

millimeter wavelengths, oversized waveguide is also re-

quired to avoid breakdown when high power is trans-

mitted, Rectangular oversized waveguide is often conve-

nient, particularly when the transmitter and receiver are

also in rectangular waveguide. Some recent applications

and designs for oversized rectangular waveguides are pre-

sented in [1].

Twists in oversized rectangular waveguide can be used

not only for the same reasons as in regular sized wave-

guide, but also to avoid negotiating an unfavorable bend.

For electrical and sometimes for mechanical fabrication

reasons, overmoded waveguide bends in the plane of the

broad wall should be avoided [1]. When the electric field is

oriented in the usual way, such bends are called H plane

bends, but if the electric field is oriented parallel to the

broad wall (“tall guide” configuration), these would be E
plane bends (see Fig. 1). Geometrically, the combination
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of a favorable bend (in the plane of the narrow wall) and a

twist can replace an unfavorable bend.

Bends in the plane of the broad wall are unfavorable

because of the closeness of the most strongly generated

unwanted mode to the mode of propagation (see Fig. 2).

Much longer bends are required to reduce the net cou-

pling to nearby modes which have phase velocities close to

that of the desired mode [1]. The coupling changes sign

each time the difference in phase of the desired and

undesired modes changes sign. 1n the ordinary electric

field configuration, the propagating g TEIO mode is coupled

to TE20 (and to TE~O where m is even) in an unfavorable

H plane bend, but to the more distant TE1l/TM1l (and to

TE1~/TMl~ where m is odd) in an E plane bend [2]. The

difference in mode conversion in the two types of bends is

even more pronounced in. the tall guide configuration

where TEO1 is propagated. There, a (favorable) H plane

bend couples TE ~1 to TEOZ which, in rectangular wave-

guide with a 2:1 aspect ratio, is as far away as TEAO. On

the other hand, an E plane bend is very undesirable

because it couples TEO1 to the nearby TE1l/TM1l pair.

The tall guide configuration is often desirable because

the ohmic wall losses reasonably far above cutoff are

inversely proportional to the length of the wall parallel to

the electric field. An added advantage is the relatively

benign behavior of H plane bends in tall guide. The TEOa

mode may even be cut off, which would allow very com-

pact H plane bends. In the ordinary configuration, the

TE1l/TM1l pair coupled by E plane bends would be

much closer to the propagating mode and almost certainly

would not be cut off in an overm~ded application.

Twists in overmoded rectangular waveguide cause cou-

pling between modes separated by an odd integer in both

indices. To design a twist when propagating TEIO, it is

usually sufficient to consider coupling only to TEO1, since

other coupled modes are further away (Fig. 2(b)). How-

ever, in the tall guide case when TEO1 is the desired

propagating mode, the coupled TE21, TM21, and TEqo

modes may be about as close to TEO1 as TEIO is. Hence,

one may have to consider simultaneous pairwise coupling

between all these modes.

When the change in twist angle 6’ along the waveguide

longitudinal axis is not too rapid in a wavelength (dO/dz
<<1/ A), the coupling between modes is linear in di9/dz.
The proportionality constant is called the coupling coeffi-

cient, which depends on the relative waveguide dimensions
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(a)

(b)

Fig. 1. Unfavorable bend geometries in oversized rectangular wave-
guide. (a) TEIO H plane bend, (b) TEOI (“ tall gmde”) E plane bend

(aspect ratio) and the mode indices. Katsenelenbaum [3]

calculated the TEIO /TEO1 coupling coefficient and showed

that reasonably far above cutoff of both modes it was

almost independent of frequency. Marhic [4], with infrared

applications such as C02 lasers in view, derived the cou-

pling coefficients for all modes coupled by twists in the

case where these modes are very far above cutoff.

We derive in Appendix I expressions for all the twist

coupling coefficients without the restriction that the cou-

pled modes are far above cutoff. The derivation adopts the

approach used in [5] and [6] for deriving the coupling

coefficients due to small wall deformations in circular

waveguide. The derivation is valid except in a case where

the two coupled modes are degenerate (have the same

propagation constant), such as would occur in square

waveguide with TEIO and TEO1.

The results of these derivations are mostly in agreement

with Marhic [4]. We find, however, that the coup-

ling between two TM modes can be nonzero, in disagree-
ment with the result of [4]. Further, a a normalization

factor for modes with a zero index is missing from the

coupling coefficients in [4]. With this normalization factor

present, our result for TEIO –TEO1 coupling agrees with

Katsenelenbaum [3].

At the end of Appendix I we also show how our

derivation of the coupling coefficients for the TEIO mode

is equivalent to the modal expansion of the dominant

hybrid mode satisfying the boundary conditions in uni-

formly twisted waveguide [7]. Results similar to those in [7]

have also been obtained recently without the restriction of

small coupling [8].
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Fig, 2. Normalized cutoff frequencies in oversized rectangular wave-

guides. (a) a/b = 2. (b) a/b = 2.25 (as in WR90). Arrows show modes
coupled by E and H plane bends, respectively (in Fig. 2 (a)), and by
twists (Fig. 2 (b)).

In Section II we present some examples of the mode

conversion in twists calculated using the coupling coeffi-

cients from Appendix I together with numerical solution of

the coupled mode equations. Except in narrow-band appli-

cations where TEIO is propagated, twists with a varying

(nonconstant) rate of twist change dd/dz are generally

preferable to those with constant dO/dz. The latter type of

twist is generally produced by ordinary waveguide twisting

methods. In Section III we discuss the fabrication and

measurement of twists of both types. We compare the

results of the measurements with predictions from Section

II and also Appendix II, which shows how the transmiss-

ion through an overmoded waveguide with a single mode

converter is determined by the mode conversion and the

ohmic attenuation of the (trapped) unwanted mode.

II. EXAMPLES OF MODE CONVERSION IN TWISTS: THEORY

For oversized waveguides that can propagate several

modes m = 1 to N with phase propagation constants ~~,

the coupled mode equations for twists with twist angle

6(z) can be written (See Appendix I, eq. (A7)):

dA#dz =

where

and the A ~ are

A&~ = /3~ – flu (2)

the mode amplitudes, Normally the at-.
tenuations a~L over the length-L of the twist are negligi-

ble, and these are accordingly neglected in (l). In Appen-

dix I, formulas are derived for the coupling factors K.,.,
where

K~~ = Kmn d9/dz. (3)

The coupling coefficients Kn,n in (1) are dimensionless.

Far above cutoff, these coefficients approach limiting val-

ues. According to the formulas derived in Appendix I,

some of these values depend somewhat on the waveguide

aspect ratio a/b. For a/b = 2.25, as in WR90, Table I
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TABLE I
COUPLING COEFFICIENTS Km. FAR ABOVE CUTOFF (a/b = 2.25)

TEIO TEO1 TE~O TE21 TM21

TEIO o 0.811 0 –0.130 0.428

TEO1 –0.811 o –0.270 o 0

TE30 o + 0.270 0 1.331 0.463

TE21 +0.130 o – 1.331 0 0
TM21 – 0.428 0 – 0.463 0 0

lists the limiting values far above cutoff for the lowest

modes coupled to TEIO and TEO1.

Note from the table that

K .
mn — Icnm (4)

as is required for power Conservation. Also, the coupling is

zero unless the first and second indices of the coupled

modes both differ by an odd number.

By far the easiest twist angle variation to fabricate is

d13/dz = O,.,/L (5)

where atOt is the total twist angle. The variation in (5)

describes quite well most commercial twists. For this case,

eqs. (1) have a closed-form solution. When there is only

one important unwanted mode n, with zero amplitude at

the beginning of the twist (where AI(0) =1), the solution

for the fractional unwanted mode power at the end of the

twist is [9]

where

[
~ ~ (A&n L/2)2+ (Klnotot

)2]”2.

(6a)

(6b)

The oscillatory nature predicted by (6) for the spurious

mode power as a function of overall twist length L shows

up clearly in Fig. 3. The spurious mode levels shown in

these and the following figures were calculated by simulta-

neous numerical integration of (1) with N = 5. Notice from

Fig. 3(a) that low mode conversion at 60 GHz can be

achieved with constant rate of twist for twist length as

short as L = 7 in. and also for L near 15 or 16 in.

If TEOI (“ tall guide” mode) is propagated in WR90

instead of TEIO, however, the mode conversion near L = 7

in. may be unacceptable, as Fig. 3(b) shows. The difficulty

is that TEOI couples directly to TE~o as well as to TEIO.

Furthermore, TE30, TE21, and TMZ1 are all closer to TEo1

(smaller AP) than to TEIO.

Since A~ varies with frequency, the mode conversion in

twists with constant d6/dz will also oscillate with

frequency. This behavior is shown in Fig. 4. For any two

modes m and n far above cutoff A&. continually de-

creases with increased frequency as I/f. Consequently,

both the period and the maximum in the mode conversion

oscillations get larger as the frequency increases (see Fig. 4

and (6)).

Fortunately, by using a nonconstant variation in d(?/dz,
the average mode conversion may be reduced substan-
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Fig. 3. Relative mode levels at 60 GHkz at the end of 90° twists in

wR90 (0.9 x0.4 in. ID) with a constar t rate of change of twist angle.
(a) TEIO incident. (b) TEOI incident.

tially, as shown in Figs. 4 and 5, The linearly varying, or

“ triamzular.” rate of twist variation is quite effective, espe-

cially &er large bandwidths. This varia~ion is described-by

{

49t0,z/L2, O<z<L/2

dfl/dz = L (7)
49t0,(L – z)/L2’, ~ < Z <L.

The maximum rate of twist, at z = L/2, is double that in

the constant rate of twist case.

Other variations in dO/dz such as cosine, cosine-squared,

or hyperbolic secant also give lower average mode conver-

sions than the constant dfl/dz twist. These functional

forms have been useful as curvature variations and also as

ellipticit y variations in certain applications involving low

mode conversion bends [10] and polarization converters

[11] in oversized waveguide. For the twist examples consid-

ered here, however, the “triangular” variation “in dflldz
appears the best.
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FREQUENCY (GHz)

Fig. 4. Mode conversion in 18 in. 90° WR90 twists propagating TEIO
with constant orlinearly varying (’’triangular”) rates of twist.
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Fig. 5. Mode conversion in20 in. 90” twistsin WR187(l.872x0.872
in. ID)propagating TEol forvarious rates of twist,

The twist with triangular d8/dz whose theoretical per-

formance is shown in Fig. 4 was designed for a broad-band

30 to 90 GHz WR90 waveguide transmission system to

carry signals over 100 ft to and from a tokamak fusion

device for plasma diagnostics applications. WR187 (Fig. 5)

is used to transmit signals from 15.7 to 17.7 GHz for new

FAA airport surveillance radars. In both of these cases,

twists may be used to avoid the unfavorable bend geome-

tries shown in Fig. 1.

For narrow-band applications using TEIO, short twists

with constant d8/dz can be acceptable. Fig. 6 shows the

predicted mode conversion from 50 to 70 GHz for such

twists, For the 7.25 in. twist, the difference between the

spurious TE ~1 and the total spurious mode power is mainly

due to TM21, while for the 13.25 in. twist, less than 1/2

percent of the power is in TM21. Measurements on twists

with these lengths are discussed in the next section.

111. MODE CONVERSION IN TWISTS: EXPERIMENTS

The twists corresponding to Fig. 6 were measured with

the setup shown schematically in Fig. 7. As discussed in

Appendix II, the presence of spurious modes shows up as

resonances as the frequency is swept. The depth of the

resonances depends not only on the mode conversion in

the twist, but also on the spurious mode attenuation.
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Fig. 6. Mode conversion in 7.25 in. and 13.25 in. 90° twists in WR90
with constant rate of twist. Almost all the spurious mode power for the

13.25 in. twist is in TEOI.

When there was no twist in the setup of Fig. 7, no trapped

mode resonances were seen, indicating that the mode

conversion in the 12 in. (linear) tapers was completely

negligible.

For calibration purposes, the flanges at the junction of

two WR90 waveguide sections were twisted by 50. The

overall length of the two sections was 12 in.; the resulting

“calibrated mode converter” was inserted as the twist of

Fig. 7. Theoretically, the mode conversion from TEIO to

TEOI at such an abrupt twist is KOAO, where KO = 8/7r2

(see Table I and (A18)). The TEOI spurious mode powet

([7’,12 in the notation of Appendix II) should then be

(KO A6)2 = 0.005, or about 23 dB below the power in

TEIO. The coupling coefficient from TEIO to TM21 is 0.44

at 60 GHz; the level of TM21 (the next most strongly

coupled mode) should be about 0.0015, or 28 dB below

TEIO.

Since both TM21 and TEOI are generated in the

calibrated twist, we would expect to see resonances with

two different depths, with some interaction where the

resonances coincide. The resonances occur at spacings

corresponding to changes of w in &L, where /32 is the

spurious mode propagation constant, and L is about 6 ft

(see Fig. 7). The observed resonances are spaced closer

than 100 MHz and vary rapidly between 2 and 10 percent

in depth over the entire band from 50 to 70 GHz. This

result is reasonably consistent with the 1:3 ratio in the

TM21 to TEOI power levels.

The resonance depths for the 7.25 in. twist were some-

what more uniform at between 3 to 6 percent near 60

GHz, and increased to almost 20 percent near 50 or 70

GHz. This result is in qualitative agreement with Fig. 6.

The resonances are not, however, quite as deep as would

be expected from comparison of the resonances of the

“calibrated twist.”
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Fig. 8. Electroformed90° WR187twist with a’’triangular’’ variation in

the twist rate over a 20 in. region.

The resonance depths for the 13.25 in. twist were less

than 2 percent near 50 GHz, and increased gradually to 25

percent at 60 GHz. This result also agrees qualitatively

with Fig. 6. Above 59 GHz, however, particularly between

59 and 63 GHz, the main resonance depths vary periodi-

cally with a period of about 600 MHz; smaller resonances

also appear interleaved with the main ones. The maximum

resonance depth in this region is about 40 percent near 62

to 63 GHz. From 63 to 70 GHz the depth is 20 to 30

percent.

Both of these twists were fabricated by filling straight

lengths of WR90 with sand to minimize the cross-sectional

distortion during twist. (The broad walls in the center of

the 7.25 in. twist curved in slightly, reducing the waveguide

b dimension by a maximum of 1/32 in.) A jig was also

constructed to prevent the waveguide centerline from mov-

ing during twisting. The overall waveguide lengths were 10

and 18 in., respectively, for the cases where the twisted

regions were nominally 7.25 and 13.25 in. Regardless of

the overall length, it was not possible to make the twisted

region in a WR90 90° twist extend longer than about 13

in. with the simple technique of fixing one waveguide end

and twisting the other.

Mechanical measurements on the” 7.25 -in.” twist showed

a very nearly uniform 12.50/in. rate of twist over the
central 6 3/4 in. span, accounting for about 84° of the

total. The rate of twist tapered to zero gradually for about

3/4 in. on each end beyond this.

By comparison, the beat wavelengths 27/A~ for TEIO to

TEOI and TEIO to TM21 are 8 in. and 4 in. at 60 GHz,

respectively. Hence, the 3/4 in. taper lengths on either end

of the twist are not long enough to be completely effective

(about one half beat wavelength is required); nevertheless,

the effect will be to modify the behavior of a constant rate

of twist to have mode conversion more like that of the

“triangular,” c)r linearly tapered, rate of twist. From the

behavior of the two types of twists shown in Fig. 4 (see the

region 40–50 CJHZ in particular), we can see that the effect

is to eliminate the sharp null in the mode conversion while

decreasing the maximum in the mode conversion for the

constant rate of twist. This effect appears to be confirmed

in our measurements of the 7.25 in. twist.

Mechanical measurements on the 13.25 in. twist also

showed the presence of tapers in the rate of twist at each

end. These tapers, however, only extended about 1/4 in.

on each end; Ithe uniformly twisted region accounted for

about 88° of the total.

The WR187 twist shown in Fig. 8 was electroformed

using an aluminum mandrel machined on a numerically

controlled 4-axis milling machine. The rate of twist has the

“ triangular” form described bf (7), where the twisted

region has length L = 20 in. Transmission measurements

of this twist between two tapers Ito fundamental waveguide

(WR62) showed resonances about 0.1 dB (2 percent) deep

from 15.7 to 17.7 GHz; the resonances due to mode

conversion in the tapers alone (without the twist) were less

than 1 percent deep. These tapers also changed the polar-

ization so that the electric field in the WR187 waveguide

was parallel to the broad wall; that is, TEOI was propa-

gated through the twist. Considering that the ohmic loss

az L of the unwanted trapped mode (TEIO) in this twist

and the tapers must be quite small, we conclude from these

measurements that the unwanted mode power IT212 must

be very small indeed (see (A541. This result is consistent

with Fig. 5.

IV. CONCLUSIONS

Expressions have been derivecl for the coupling between

modes in twisted oversized (overmoded) rectangular wave-

guides. The coupled mode equations involving these ex-

pressions have been numerically integrated for several

cases of constant and tapered rates of twist. In this manner,

linear tapering of the twist rate was shown theoretically to
reduce the mode conversion in broad-band applications.

Twists have been fabricated to avoid unfavorable bends in

oversized waveguide runs for airport radar and plasma

diagnostics applications. With reference to a discrete abrupt

twist and also to the derived characteristics of resonance

losses in transmission measurements, measurements on
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Fig, 9,

these
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Geometry for the integration around a twisted waveguide wall
to determine the coupling coefficients.

twists were shown to agree qualitatively with the

predictions from the coupled wave equations.

APPENDIX I

COUPLING COEFFICIENTS FOR RECTANGULAR

WAVEGUIDE TWISTS

To find the coupling coefficients between modes due to

twists in rectangular waveguide, first write the total fields

E and H in terms of the normal mode fields en and h ~:

E = ~A~ (z)e-J~”ze~ + ~A; (z)e+’~~’e; (Al)
m m

and similarly for H. Here A;(z) and A ~ (z ) are the

amplitudes of the forward and backward traveling m th

mode, respectively. The ~~ are the propagation constants,

and any attenuation constants am due to ohmic loss on the

waveguide wall can be included in the A; through the

exponential factors e ~ am’. The normal mode fields them-

selves are orthonormal and independent of z:

Jj[e: ww*l~~=+-L (A2)

where S is the waveguide cross section.

Following Carlin and Moorthy [5] (see also [6]), we may

apply certain vector identities and (A2) with the result

f[EDx(~i)*+(eJ)*xHDl~~~(’43)

where the integral is taken around the circumference of the
cross section, and ? is the unit vector perpendicular to the

waveguide wall and directed outward. Here we have also

written the total fields E and H in terms of the total fields

Eu and Hu in the undeformed waveguide plus those aris-
ing from any deformations (with subscript D):

E= Eu+E~ (A4)

and similarly for H. Equation (A3) is rather general, valid
for rather arbitrary waveguide cross sections and (lossless)

wall reactance. In smooth waveguide, the second cross

product on the right-hand side of (A3) vanishes, because

the tangential fields em x ? must vanish on the wall.

The fields ED due to wall deformations in (A3) can be

related to the fields EU in undeformed rectangular wave-

guide by requiring that the total field tangential to the

deformed wall E, must vanish. To first order in the wall

deformations 8X and 8-Y, we obtain (see Fig. 9)

a8y
E~X=–8y~2– EuY— ? = f j (A5a)

ay ax 7

138X
E~y = – ($X~: – EuX—

6Jy ‘
~=+f (A5b)

i?ay
E~= = – 8y~& – EuY— ? = A j (A6a)

c)y az ‘

a8x
E~z=–8x~f– EuX— ?=+f.

az’ –
(A6b)

The field components in undeformed waveguide can in

turn be written in terms of the components of the normal

mode fields e. through the sum in (Al). Backscattering

into oppositely traveling modes e. can generally be ne-

glected if the wall deformations vary slowly in a free-space

wavelength. Then from (A3), (A5), and (A6), the coupling

between forward traveling modes takes the form

(A7)

where

Apron = pm – & (A8)

and we have dropped the + superscripts.

The coupling factors K~n contain integrals around the

circumference of the w,aveguide derived from the right-hand

side of (A3). Using (A5), (A6), and (A7), and noting that

dl changes sign on opposite sides of the waveguide (Fig. 9),

JKm.=; ~“dx[TX(y =b)-T’(y= O)]

+;,fbdy[q(x =a)–q(x=())] (A9)

where

‘X=[’f%)+e+alh.,
and

‘,=[’x(~l+efalh.
[

den,
+ &x

1
— – jA~~~ e~X h~Y. (AIOb)
ax

The derivatives of 8X and 8y with respect to z in (A6)

have been eliminated by using the following equation,

which is valid for coupling between modes with different

propagation constants ~ [12]:

i;
——+ —jA&~.
az

(All)
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The coupling factors from (A7), (A9), and (AlO) are still

quite general, and can be used for E and H plane bends as

well as for twists. By replacing &z by ~~~ dz everywhere,

the coupling in smooth rectangular waveguide tapers can

also be handled with these equations.

For rectangular waveguide twists, we have (see Fig. 9)

()
6’8y

i3y= x–: 6 —=0
(3X

on y = O, b (A12a)

(i

d~x
8X= :–y 8 —=–d

dy
on x = O, a. (A12b)

Substituting these expressions into (A1O) along with the

expression for the fields of normal modes carrying unit

power, we can obtain from (A9) the coupling factors.

Here we define

P.= &/k k = 21T/A = 2~f/c (A13)

R = a/b (A14)

and

0’= dO/dz. (A15)

The modes are coupled by the change in the twist angle

rather than by the twist angle f3 itself, since if 8 were

constant we could always rotate the coordinate system to

make O = O again. Hence we have made use of the equiv-

alence in (Al 1) again to write the following coupling

factors in terms of 0’ instead of 0.

In general, there is no coupling between modes due to

twist unless the modes have opposite parity in both in-

dices. That is, in the following,

Km. # O only if p + r and q +s are both odd. (A16)

For coupling from TEP~(m) to TE,,( n ), we have, when

(A16) is satisfied,

K~~= –(KO/D)(P~ +P~)(N1+N, N3)0’ (A17)

where

KO = (8/7r2) (A18)

D = (P~PHe~cm)1’2R(r2– p2)2(s2–q2)2

‘(p2 + R2q2)’12(rz + R2S2)l/2 (A19)

Nl= (p’+ R2q2)(r2 + R2s2)(q2r2– p2s2) (A20a)

N2=r2s2–p2q2 (A20b)

N3=p2r2– R4q2s2 + R2(p2s2 – q2r2)

o[(Pm - Pn)/(Pm + P.)] (A20c)

{

2 ifporq=O
cm =

1 otherwise
(A21)

and similarly for c ~.

For coupling between TMP,(m) and TM,,(n),

K~n = 2( K0/D) pqrsNd N50’ (A22)

where

N4=P. (p2+R2q2) +PM(r2+R2s2) (A23a)

and

N5=R2(s2- q2)--(r2-p2). (A23b)

Finally, for coupling between TEP~(rn) and TM,,(n),

Kn~=2(K0/D) Rrs[R2p2(s2 --q2)2+ q2(r2-p’)2] 8’.

(A24)

Notice that the coupling factors K~H in (A17) and (A22)

change sign under interchange of modes: m ~ n, p - r,
q @s. This is consistent with power conservation, which in

the absence of significant ohmic loss requires

In the present case, all the K~. are real. A separate

derivation of the coupling factor for coupling from

TMP~(m) to ‘rE,,(n) demonstrates that (A25) holds for

the K~. in (A24) also.

For the simplest coupling, from TEIO to TEOI,

(Pm + P.) Ko&
K~~ =

(PmPn)l/2 2 ‘
TEIO -TEOI. (A26)

When both modes are far above cutoff, Pm and P. both

approach unity, and KM. = K0,8’, which is independent

both of waveguide size and of frequency. Similar situations

hold for twist coupling between other modes (see Table I).

For comparison with other work, we note that (A26)

agrees with the result of Katsenelenbaum [3], who derived

the twist coupling between these two modes only.

Marhic [4] derived the twist coupling factors between

any two modes, assuming that they were all far from

cutoff. However, in his result for TEP~ to TE,, coupling,

the normalization factors Cm= 2 and c. = 2 for TEPO or

TEO, modes are missing. Furthermore, he obtains no cou-

pling at all between two TM modes. Otherwise, Marhic’s

results agree with (A17) and (A?4).

An alternative derivation of the coupling coefficients

may use the generalized telegraphist’s equation approach

[13]. In this alpproach, Maxwell’s equations are converted

to the form

dVM
— = T~~V~ + ~ T~R,Y~a– j~MZ.In
dz n+m

dI~

dz =
- T~MI~ – ~ ~~~1~– j~~V~/Z~

n#m

where the Z~ are the modal wave impedances

Z*= Zo/PM (TE modes)

Zm = zoPm (TM modes).

Z. is the impedance of free space, and the T...

(A27a)

(A27b)

(A28a)

(A28b)

can be
,,’ r,

w~itten in terms of integrals over the waveguide cross
section.

By defining the traveling wave amplitudes,

we find that (A27) can be written in the form of (A7) if we

neglect reflections (we assume the & are independent of
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Converter
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OVERSiZED WAVEGUIDE

Fig, 10. Schematic of transmission through an overmoded waveguide
with a mode converter that generates trapped modes.

z). The A; in (A29) are the same as in (Al), and the

forward coupling coefficients KJM = Kvl. are related to the

T~~ in (A27) by

Kn. = [( Z./Z~)1’2T.M – (ZJZH)li’T;.]/2. (A30)

We could also include reflections terms; to calculate the

coupling coefficients K;. for reflection, replace the minus

sign in (A30) by a plus sign.

Now let us consider the relationship of the above results

to those in Yabe and Mushiake [7]. When an incident

mode m = 1 undergoes no reflections, we have A: = 1 and

V1/ll = Z1. Combining (A29) corresponding to m =1 and

m = n, we obtain

A;= [( Z1/Z~)l’2Vn + (Z~/Z1)’’21~]/2 (A31)

where

Vn = rn/vl

I.= 1. /11. (A32)

Let us identify m = 1 with TEIO and n with TEOI. V. and

I. can then be obtained as the modal expansion coeffi-

cients for the dominant hybrid mode in a uniformly twisted

rectangular waveguide. From Table 1 of Yabe and

Mushiake’s work [7], after some rewriting, we have

Vol = 2P:OW

101= (F’:o+ P&)w (A33)

where the normalized propagation constants 1’10 and POI

are as in (A13), and

W= – j(8/n2)6’[kPIO(P~0 - PFI)] “. (A34)

From (A28a) and (A31), we then have

AA= – jd’(A/m2)[(~10 ~ PO,) I(PIO ~ PO,)]

~[@,OP,,)l/2]. (A35)

In view of (3) and (A18), we find from (A35) that the

forward coupled TEOI amplitude obtained from [7] is

AL= – JK../A&. (A36)

where K~a is the forward coupling factor for TEIO to TEOI

coupling given by (A26). The magnitude of the coupled

TEOI mode calculated in this way agrees with the magni-

- A’l

/4

B2

Fig. 11. Scattering matrices corresponding to the situation in Fig. 10.

tude of forward coupled modes in uniformly coupled

overmoded waveguides given by Unger [14]. Expressions

for the amplitudes of the TEOg, TE21, and TMZI modes

could be obtained similarly from the modal expansion

coefficients given in Yabe and Mushiake [7].

Hence we have shown that deriving the coupling coeffi-

cients in the manner of this appendix is equivalent to the

modal expression technique of [7].

APPENDIX II

DETERMINATION OF MODE CONVERSION IN AN

OVERMODED WAVEGUIDE COMPONENT FROM

MEASUREMENTS OF RESONANCE Loss IN A

TRANSMISSION MEASUREMENT BETWEEN

FUNDAMENTAL WAVEGUIDES

Consider the experimental situation shown schemati-

cally in Fig. 10. An oversized waveguide is connected at

both ends by mode transducers and/or tapers to single-

mode waveguide. A mode converter is located somewhere

along the oversized waveguide, and we consider for the

purposes of this analysis that the converter’s effect is

localized at a point.

Mathematically, we can model the arrangement in Fig.

10 by blocks i = 1 through 5 in Fig. 11, each with scatter-

ing matrix S,. If we assume that the mode transducers and

tapers connecting the single-mode and oversided wave-

guides are ideal, then there is no mode conversion or

reflection associated with SI or S5. The case where mode

conversion does occur at both of these points was consid-

ered by King and Marcatili [15]; they did not consider a

single mode converter located somewhere along the over-

sized waveguide. Klinger [16] refined this analysis for the

case where an oversized waveguide is terminated in a

short; the unfolded schematic shown in Figs. 10 and 11

(without the mode converter at i =3) then can be used

provided that S1 and S5 both represent the same mode

transducer/taper under test. In any case, our assumption

of ideal mode transducers/tapers can be checked experi-

mentally prior to the insertion of the mode converter at

i = 3 by checking that there are no significant resonances.

For ideal mode transducers/tapers, we have

[1010
S1=S5= 1 () () (A37)

001

[brnl=sl[aml (A38)

and

where the matrices represented in brackets are column
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matrices

[1[am] = ~~ , etc. (A40)
az

The blocks i=2 and i=4 represent lengths 1~ and 1~,

respectively, of ideal oversized waveguide; thus at i=2,

[

Al
al

AZ
az

where

‘!e?’’e:e:2ei+21F‘A41)
j+. = ‘nlL, n=l,2 (A42)

represent the propagation factors of the desired (n=l)

and unwanted (n = 2) modes, respectively. The situation at

i = 4 is the same, except that all the elements in the

matrices of (A41) are replaced by primes, and

h = ‘.lR, n=l,2. (A43)

Finally, at the mode converter i = 3 we have

Here we have assumed that the converter is symmetric

and also does not generate reflections. Far above cutoff in

oversized waveguide, the reflections are ordinarily totally

negligible. We accordingly also neglect reflection coupling

between modes:

T1=O. (A45)

Further, from the requirement of power conservation in a

mode converter with no ohmic dissipation, we have

Ty = – T2* (A46)

(compare the analogous statement in (4)),

TO= Th* (A47)

(see the perturbation solutions (119)-(120) of Rowe and

Warters [17]), and finally

IT012=1-ITJ’ (A48)

(see Fig. 11).

To solve for the transmission

T= b;/a O (A49)

we first solve successively for b~ in terms of a;, B [, A 1

and A z, bl and bz, and finally a~ and u ~ by working to

the left in Fig. 11 using (A37), (A41), and (A44). Then a‘
is written in terms of a ~ by working to the right in Fig. 11

(a& = O), and a~ is in turn written in terms of a. and a2
by working to the left. Hence a2 can be solved in terms of

a ~ alone, and substitution in the expression for b~ previ-

ously discussed yields b: in terms of a~ as desired. If we

1041

write

ITI = e-a’~lTOl IFI (A50)

where

L=lL+lR (A51)

al L being the one-way attenuation of the desired mode

and the quantity F describing the resonance behavior, then

l–
——

1+

2[T21’E

l+E

21T212E
(A52)

1--E

where

E=exp(–a2L) (A53)

represents the one-way attenuation of the unwanted mode.

In deriving (A52), we have assumed that IT212<<1. (IT212 is

the relative power converted to the unwanted mode in one

pass of the mode converter when all of the power is

initially in the desired mode.)

Note that if thlere is little ohmic loss for the unwanted

mode, the resonances can become very deep. In fact, in the

limit of az = O, E =1, IFI &in goes to zero for all values of

\T,l 2. When a2L is small, (A52) be;omes approximately

This highlights the importance of the ratio of the one-way

mode converted power IT212 to the one-way attenuation of

the unwanted mode.

The resonances where F = F~in occur at very fine inter-

vals when the length L is large compared to the guide

wavelength of the unwanted mode [15]. The resonance

condition is

&L== m~ +const, m integer (A55)

where the complex propagation constants in (A42) are

I’R=a~+j~~, It =1,2. (A56)

If the length of oversized waveguide is very long, however,

so that a2 L becomes large with respect to unity, then

lFl%./ IFl LU also approaches unity, showing that the
resonances have been smeared out. That is, the “Q” of the

cavity in Fig. 11 has become very small.

To determine the mode conversion IT212 from a mea-

surement of the IIoss resonances using (A52) or (A54) and

(A53), the loss a2L of the unwanted mode in the oversized

waveguide “ cavit y“ must be known. If the loss alL of the

desired mode can be measured, and if the “cavity” length

L is large enough that the losses in the oversized wave-
guide are large compared with the losses in the mode

launchers and/or tapers at each end, then a2L can be

estimated from alL using the formulas for attenuation of

various modes. Deviations from ideal surface resistivity

should make the ratio of actual to theoretical attenuation

the same for both modes.
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Alternatively, the loss resonances can be compared with

those of a “calibrated” mode converter. For example, the

mode conversion from TE ~0to TEOI in an abrupt twist of

(small) angle change A8 is just IT, I = K, Af3 = (8/m-2) AO.
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