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Low-Loss Twists in Oversized
Rectangular Waveguide

JOHN L. DOANE, SENIOR MEMBER, IEEE

Abstract ~Twists may be required in oversized rectangular waveguide
used for low-loss transmission at the higher microwave and millimeter-wave
frequencies. The unwanted mode conversion in such twists is calculated
here from numerical integration of the coupled mode equations, consider-
ing simultaneous coupling of the five lowest order modes coupled in a
twist. Twists with tapered or linearly varying rates of twist are shown to be
superior in medium- or broad-band applications to those with uniform twist
rate, such as those normally made commercially for single-mode wave-
guide. Some recent applications and designs for oversized rectangular
waveguides are presented in [1].

Measurements consistent with these theoretical calculations are dis-
cussed for uniform twists in WR90 (0.9 0.4 in.) at 60 GHz and for an
electroformed twist having a linearly tapered rate of twist in WR187
(1.872% 0.872 in.) from 15.7 to 17.7 GHz.

The coupling coefficients needed in the calculations are derived in an
appendix, and are compared with the results of other work, including a
modal expansion of the dominant mode in twisted waveguide. A second
appendix considers the transmission through an oversized waveguide with a
mode converter generating a trapped unwanted mode, and derives the
result for the dependence of the resonance depth on the mode conversion
and the attenuation of the trapped mode.

1. INTRODUCTION

VERSIZED (overmoded) waveguide has been used

occasionally for many years to reduce the ohmic
(wall) losses of smaller dominant-mode waveguide. At
millimeter wavelengths, oversized waveguide is also re-
quired to avoid breakdown when high power is trans-
mitted. Rectangular oversized waveguide is often conve-
nient, particularly when the transmitter and receiver are
also in rectangular waveguide. Some recent applications
and designs for oversized rectangular waveguides are pre-
sented in [1].

Twists in oversized rectangular waveguide can be used
not only for the same reasons as in regular sized wave-
guide, but also to avoid negotiating an unfavorable bend.
For electrical and sometimes for mechanical fabrication
reasons, overmoded waveguide bends in the plane of the
broad wall should be avoided [1]. When the electric field is
oriented in the usual way, such bends are called H plane
bends, but if the electric field is oriented parallel to the
broad wall (“tall guide” configuration), these would be F
plane bends (see Fig. 1). Geometrically, the combination
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of a favorable bend (in the plane of the narrow wall) and a
twist can replace an unfavorable bend.

Bends in the plane of the broad wall are unfavorable
because of the closeness of the most strongly generated
unwanted mode to the mode of propagation (see Fig. 2).

Much longer bends are required to reduce the net cou-
pling to nearby modes which have phase velocities close to
that of the desired mode [1]. The coupling changes sign
each time the difference in phase of the desired and
undesired modes changes sign. In the ordinary electric
field configuration, the propagating TE;; mode is coupled
to TE,, (and to TE,,, where m is even) in an unfavorable
H plane bend, but to the more distant TE,, /TM,, (and to
TE,,,/TM,;,, where m is odd) in an E plane bend [2]. The
difference in mode conversion in the two types of bends is
even more pronounced in- the tall guide configuration
where TE,, is propagated. There, a (favorable) H plane
bend couples TEy to TE, which, in rectangular wave-
guide with a 2:1 aspect ratio, is as far away as TE,;. On
the other hand, an E plane bend is very undesirable
because it couples TE; to the nearby TE,; /TM,; pair.

The tall guide configuration is often desirable because
the ohmic wall losses reasonably far above cutoff are
inversely proportional to the length of the wall parallel to
the electric field. An added advantage is the relatively
benign behavior of H plane bends in tall guide. The TE,,
mode may even be cut off, which would allow very com-
pact H plane bends. In the ordinary configuration, the
TE,,/TM;; pair coupled by E plane bends would be
much closer to the propagating mode and almost certainly
would not be cut off in an overmoded application.

Twists in overmoded rectangular waveguide cause cou-
pling between modes separated by an odd integer in both
indices. To design a twist when propagating TE,,, it is
usually sufficient to consider coupling only to TE,;, since
other coupled modes are further away (Fig. 2(b)). How-
ever, in the tall guide case when TE, is the desired
propagating mode, the coupled TE,;, TM,;, and TE,,
modes may be about as close to TE,; as TE,, is. Hence,
one may have to consider simultaneous pairwise coupling
between all these modes.

When the change in twist angle 8 along the waveguide
longitudinal axis is not too rapid in a wavelength (46/dz
<« 1/A), the coupling between modes is linear in d8/dz.
The proportionality constant is called the coupling coeffi-
cient, which depends on the relative waveguide dimensions
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Fig. 1. Unfavorable bend geometries in oversized rectangular wave-
guide. (a) TE,, H plane bend. (b) TE; (“tall gmde”) E plane bend

(aspect ratio) and the mode indices. Katsenelenbaum [3]
calculated the TE,, /TE, coupling coefficient and showed
that reasonably far above cutoff of both modes it was
almost independent of frequency. Marhic [4], with infrared
applications such as CO, lasers in view, derived the cou-
pling coefficients for all modes coupled by twists in the
case where these modes are very far above cutoff.

We derive in Appendix I expressions for all the twist
coupling coefficients without the restriction that the cou-
pled modes are far above cutoff. The derivation adopts the
approach used in [5] and [6] for deriving the coupling
coefficients due to small wall deformations in circular
waveguide. The derivation is valid except in a case where
the two coupled modes are degenerate (have the same
propagation constant), such as would occur in square
waveguide with TE,; and TE,.

The results of these derivations are mostly in agreement
with Marhic [4]. We find, however, that the coup-
ling between two TM modes can be nonzero, in disagree-
ment with the result of [4]. Further, a v2 normalization
factor for modes with a zero index is missing from the
coupling coefficients in [4]. With this normalization factor
present, our result for TE,,~TE, coupling agrees with
Katsenelenbaum [3].

At the end of Appendix I we also show how our
derivation of the coupling coefficients for the TE,, mode
is equivalent to the modal expansion of the dominant
hybrid mode satisfying the boundary conditions in uni-
formly twisted waveguide [7]. Results similar to those in [7]
have also been obtained recently without the restriction of
small coupling [8].
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Fig. 2. Normalized cutoff frequencies in oversized rectangular wave-
guides. (a) a /b =2. (b) a /b =225 (as in WR90). Arrows show modes
coupled by £ and H plane bends, respectively (in Fig. 2 (a)), and by
twists (Fig. 2 (b)).

In Section II we present some examples of the mode
conversion in twists calculated using the coupling coeffi-
cients from Appendix I together with numerical solution of
the coupled mode equations. Except in narrow-band appli-
cations where TE,, is propagated, twists with a varying
(nonconstant) rate of twist change df/dz are generally
preferable to those with constant d@/dz. The latter type of
twist is generally produced by ordinary waveguide twisting
methods. In Section III we discuss the fabrication and
measurement of twists of both types. We compare the
results of the measurements with predictions from Section
II and also Appendix II, which shows how the transmis-
sion through an overmoded waveguide with a single mode
converter is determined by the mode conversion and the
ohmic attenuation of the (trapped) unwanted mode.

II. ExaMPLES OF MODE CONVERSION IN TwiSTS: THEORY

For oversized waveguides that can propagate several
modes m =1 to N with phase propagation constants (3,
the coupled mode equations for twists with twist angle
#(z) can be written (See Appendix I, eq. (A7)):

N
dA,/dz= ). «,,(d8/dz)exp(jAB,,z)4, (1)
Tk
where
AB,..=8,— 8, (2)

and the A4, are the mode amplitudes. Normally the at-
tenuations a,, L over the length L of the twist are negligi-
ble, and these are accordingly neglected in (1). In Appen-
dix I, formulas are derived for the coupling factors K
where

mn>

(3)

The coupling coefficients «,, in (1) are dimensionless.
Far above cutoff, these coefficients approach limiting val-
ues. According to the formulas derived in Appendix I,
some of these values depend somewhat on the waveguide
aspect ratio a/b. For a/b=2.25, as in WR90, Table I

K, =«x,,db/dz.

m
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TABLE 1
CoUPLING COEFFICIENTS k,,,,, FAR ABOVE CUTOFF (g /b = 2.25)
TEq TEy TEy TE, ™,
TE, 0 0.811 0 —-0.130 0428
TEy —0.811 0 —-0.270 0 0
TE,, 0 +0.270 0 1331 0463
TE,; +0.130 0 —1.331 0 0
T™,,  —0428 0 —0.463 0 0

lists the limiting values far above cutoff for the lowest
modes coupled to TE,; and TE,.
Note from the table that

Kmn == Knm (4)
as is required for power conservation. Also, the coupling is
zero unless the first and second indices of the coupled

modes both differ by an odd number.
By far the easiest twist angle variation to fabricate is

db/dz =0, /L )

where 8, is the total twist angle. The variation in (5)
describes quite well most commercial twists. For this case,
eqgs. (1) have a closed-form solution. When there is only
one important unwanted mode n, with zero amplitude at
the beginning of the twist (where 4,(0) =1), the solution
for the fractional unwanted mode power at the end of the
twist is [9]

PRO IR ) IS

where
1,2

u=[(ABL, L/2) "+ (k180)7] (6b)

The oscillatory nature predicted by (6) for the spurious
mode power as a function of overall twist length L shows
up clearly in Fig. 3. The spurious mode levels shown in
these and the following figures were calculated by simulta-
neous numerical integration of (1) with N = 5. Notice from
Fig. 3(a) that low mode conversion at 60 GHz can be
achieved with constant rate of twist for twist length as
short as L = 7 in. and also for L near 15 or 16 in.

If TE, (“tall guide” mode) is propagated in WR90
instead of TE,,, however, the mode conversion near L =7
in. may be unacceptable, as Fig. 3(b) shows. The difficulty
is that TE, couples directly to TE,, as well as to TE,.
Furthermore, TE,,, TE,;, and TM,, are all closer to TE,
(smaller AB) than to TE,,.

Since AB varies with frequency, the mode conversion in
twists with constant df/dz will also oscillate with
frequency. This behavior is shown in Fig. 4. For any two
modes m and n far above cutoff AB,,, continually de-
creases with increased frequency as 1/f. Consequently,
both the period and the maximum in the mode conversion
oscillations get larger as the frequency increases (see Fig. 4
and (6)). ’

Fortunately, by using a nonconstant variation in df/dz,
the average mode conversion may be reduced substan-
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Fig. 3. Relative mode levels at 60 GHz at the end of 90° twists in

WR90 (0.9 % 0.4 in. ID) with a constant rate of change of twist angle.
(a) TE,, incident. (b) TE, incident.

tially, as shown in Figs. 4 and 5. The linearly varying, or
“triangular,” rate of twist variation is quite effective, espe-
cially over large bandwidths. This variation is described by

40,,z/L*%, 0<z<L/2

do/dz = (7

40, (L—z)/L?, —2—<Z<L.
The maximum rate of twist, at z = L /2, is double that in
the constant rate of twist case.

Other variations in df/dz such as cosine, cosine-squared,
or hyperbolic secant also give lower average mode conver-
sions than the constant df/dz twist. These functional
forms have been useful as curvature variations and also as
ellipticity variations in certain applications involving low
mode conversion bends [10] and polarization converters
[11] in oversized waveguide. For the twist examples consid-
ered here, however, the “triangular” variation in df/dz
appears the best.
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Fig. 4. Mode conversion in 18 in. 90° WR90 twists propagating TE,,

with constant or linearly varying (“ triangular”) rates of twist.
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Fig. 5. Mode conversion in 20 in. 90° twists in WR187 (1.872x0.872
in. ID) propagating TE; for various rates of twist.

The twist with triangular d€/dz whose theoretical per-
formance is shown in Fig. 4 was designed for a broad-band
30 to 90 GHz WR90 waveguide transmission system to
carry signals over 100 ft to and from a tokamak fusion
device for plasma diagnostics applications. WR187 (Fig. 5)
is used to transmit signals from 15.7 to 17.7 GHz for new
FAA airport surveillance radars. In both of these cases,
twists may be used to avoid the unfavorable bend geome-
tries shown in Fig. 1.

For narrow-band applications using TE,, short twists
with constant d@/dz can be acceptable. Fig. 6 shows the
predicted mode conversion from 50 to 70 GHz for such
twists. For the 7.25 in. twist, the difference between the
spurious TE; and the total spurious mode power is mainly
due to TM,,;, while for the 13.25 in. twist, less than 1/2
percent of the power is in TM,;. Measurements on twists
with these lengths are discussed in the next section.

IIL

The twists corresponding to Fig. 6 were measured with
the setup shown schematically in Fig. 7. As discussed in
Appendix II, the presence of spurious modes shows up as
resonances as the frequency is swept. The depth of the
resonances depends not only on the mode conversion in
the twist, but also on the spurious mode attenuation.

MobDE CONVERSION IN TwisTs: EXPERIMENTS
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Fig. 6. Mode conversion in 7.25 in. and 13.25 in. 90° twists in WR90
with constant rate of twist. Almost all the spurious mode power for the
13.25 in. twist is in TE,.

When there was no twist in the setup of Fig. 7, no trapped
mode resonances were seen, indicating that the mode
conversion in the 12 in. (linear) tapers was completely
negligible.

For calibration purposes, the flanges at the junction of
two WRO0 waveguide sections were twisted by 5°. The
overall length of the two sections was 12 in.; the resulting
“calibrated mode converter” was inserted as the twist of
Fig. 7. Theoretically, the mode conversion from TE,, to
TE; at such an abrupt twist is K,A8, where K,=8/7?
(see Table I and (A18)). The TE,, spurious mode power
(|T,|*> in the notation of Appendix II) should then be
(Ko A8)? =0.005, or about 23 dB below the power in
TE,,. The coupling coefficient from TE,, to TM,, is 0.44
at 60 GHz; the level of TM,; (the next most strongly
coupled mode) should be about 0.0015, or 28 dB below
TE .

Since both TM, and TE, are generated in the
calibrated twist, we would expect to see resonances with
two different depths, with some interaction where the
resonances coincide. The resonances occur at spacings
corresponding to changes of « in 8,L, where 8, is the
spurious mode propagation constant, and L is about 6 ft
(see Fig. 7). The observed resonances are spaced closer
than 100 MHz and vary rapidly between 2 and 10 percent
in depth over the entire band from 50 to 70 GHz. This
result is reasonably consistent with the 1:3 ratio in the
TM,, to TE, power levels.

The resonance depths for the 7.25 in. twist were some-
what more uniform at between 3 to 6 percent near 60
GHz, and increased to almost 20 percent near 50 or 70
GHz. This result is in qualitative agreement with Fig. 6.
The resonances are not, however, quite as deep as would
be expected from comparison of the resonances of the
“calibrated twist.”
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Fig. 7. Schematic of measurement apparatus used to check the mode conversion in the twists corresponding to Fig. 6.

Fig. 8. Electroformed 90° WR187 twist with a “triangular” variation in
the twist rate over a 20 in. region.

The resonance depths for the 13.25 in. twist were less
than 2 percent near 50 GHz, and increased gradually to 25
percent at 60 GHz. This result also agrees qualitatively
with Fig. 6. Above 59 GHz, however, particularly between
59 and 63 GHz, the main resonance depths vary periodi-
cally with a period of about 600 MHz; smaller resonances
also appear interleaved with the main ones. The maximum
resonance depth in this region is about 40 percent near 62
to 63 GHz. From 63 to 70 GHz the depth is 20 to 30
percent.

Both of these twists were fabricated by filling straight
lengths of WR90 with sand to minimize the cross-sectional
distortion during twist. (The broad walls in the center of
the 7.25 in. twist curved in slightly, reducing the waveguide
b dimension by a maximum of 1/32 in.) A jig was also
constructed to prevent the waveguide centerline from mov-
ing during twisting. The overall waveguide lengths were 10
and 18 in., respectively, for the cases where the twisted
regions were nominally 7.25 and 13.25 in. Regardless of
the overall length, it was not possible to make the twisted
region in a WR90 90° twist extend longer than about 13
in. with the simple technique of fixing one waveguide end
and twisting the other.

Mechanical measurements on the “7.25-in.” twist showed
a very nearly uniform 12.5°/in. rate of twist over the
central 6 3/4 in. span, accounting for about 34° of the
total. The rate of twist tapered to zero gradually for about
3/4 in. on each end beyond this.

By comparison, the beat wavelengths 27/A8 for TE,, to
TE,, and TE,, to TM,, are 8 in. and 4 in. at 60 GHz,
respectively. Hence, the 3 /4 in. taper lengths on either end

of the twist are not long enough to be completely effective
(about one half beat wavelength is required); nevertheless,
the effect will be to modify the behavior of a constant rate
of twist to have mode conversion more like that of the
“triangular,” or linearly tapered, rate of twist. From the
behavior of the two types of twists shown in Fig. 4 (see the
region 40-50 GHz in particular), we can see that the effect
is to eliminate the sharp null in the mode conversion while
decreasing the maximum in the mode conversion for the
constant rate of twist. This effect appears to be confirmed
in our measurements of the 7.25 in. twist.

Mechanical measurements on the 13.25 in. twist also
showed the presence of tapers in the rate of twist at each
end. These tapers, however, only extended about 1/4 in.
on each end; the uniformly twisted region accounted for
about 88° of the total.

The WRI187 twist shown in Fig. 8 was electroformed
using an aluminum mandrel machined on a numerically
controlled 4-axis milling machine. The rate of twist has the
“triangular” form described by (7), where the twisted
region has length L =20 in. Transmission measurements
of this twist between two tapers to fundamental waveguide
(WR62) showed resonances about 0.1 dB (2 percent) deep
from 15.7 to 17.7 GHz; the resonances due to mode
conversion in the tapers alone (without the twist) were less
than 1 percent deep. These tapers also changed the polar-
ization so that the electric field in the WR187 waveguide
was parallel to the broad wall; that is, TE, was propa-
gated through the twist. Considering that the ohmic loss
a,L of the unwanted trapped mode (TE,) in this twist
and the tapers must be quite small, we conclude from these
measurements that the unwanted mode power |T,|> must
be very small indeed (see (AS54). This result is consistent
with Fig. 5.

IV. CONCLUSIONS

Expressions have been derived for the coupling between
modes in twisted oversized (overmoded) rectangular wave-
guides. The coupled mode equations involving these ex-
pressions have been numerically integrated for several
cases of constant and tapered rates of twist. In this manner,
linear tapering of the twist rate was shown theoretically to
reduce the mode conversion in broad-band applications.
Twists have been fabricated to avoid unfavorable bends in
oversized waveguide runs for airport radar and plasma
diagnostics applications. With reference to a discrete abrupt
twist and also to the derived characteristics of resonance
losses in tramsmission measurements, measurements on
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Fig. 9. Geometry for the integration around a twisted waveguide wall
to determine the coupling coefficients.

these twists were shown to agree qualitatively with the
predictions from the coupled wave equations.

APPENDIX |
CouPLING COEFFICIENTS FOR RECTANGULAR
WAVEGUIDE TWISTS

To find the coupling coefficients between modes due to
twists in rectangular waveguide, first write the total fields
E and H in terms of the normal mode fields e,, and &,

E=Y A} (z)e Pnie’ + YA, (z)etPnies (A1)

and similarly for H. Here A, (z) and A, (z) are the
amplitudes of the forward and backward traveling mth
mode, respectively. The 8, are the propagation constants,
and any attenuation constants a,, due to ohmic loss on the
waveguide wall can be included in the 4} through the
exponential factors e * *»?. The normal mode fields them-
selves are orthonormal and independent of z:

[[len x(hi)?])-as = +3,,,

where S is the waveguide cross section.
Following Carlin and Moorthy [5] (see also [6]), we may
apply certain vector identities and (A2) with the result

(A2)

d 1
— At = F —eotBnz
dZ m(Z) 2e

- PlE, X () + (e ) x Hp)-Fdi (A3)

where the integral is taken around the circumference of the
cross section, and 7 is the unit vector perpendicular to the
waveguide wall and directed outward. Here we have also
written the total fields £ and H in terms of the total fields
E, and H, in the undeformed waveguide plus those aris-
ing from any deformations (with subscript D):

E=E,+E, (A4)

and similarly for H. Equation (A3) is rather general, valid
for rather arbitrary waveguide cross sections and (lossless)
wall reactances. In smooth waveguide, the second cross
product on the right-hand side of (A3) vanishes, because
the tangential fields e,, X # must vanish on the wall.
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The fields E;, due to wall deformations in (A3) can be
related to the fields E, in undeformed rectangular wave-
guide by requiring that the total field tangential to the
deformed wall E, must vanish. To first order in the wall
deformations dx and 8y, we obtain (see Fig. 9)

JE,, 38y
on="8y—(.9y _Euyg’ F=+9 (ASa)
0E,,  38x
EDy= - _f;— uxW’ r=+x (ASb)
JE,, d8y
Ep,= _6))—;;— w3, F=%) (A6a)
SE,, 36x
Ep.=—dx—=-E,——, F=zx% (A6

The field components in undeformed waveguide can in
turn be written in terms of the components of the normal
mode fields e, through the sum in (Al). Backscattering
into oppositely traveling modes e, can generally be ne-
glected if the wall deformations vary slowly in a free-space
wavelength. Then from (A3), (AS), and (A6), the coupling
between forward traveling modes takes the form

dA
_m__ ZKmnejA,anzAn

= (A7)

n
where

and we have dropped the + superscripts.

The coupling factors K, contain integrals around the
circumference of the waveguide derived from the right-hand
side of (A3). Using (AS5), (A6), and (A7), and noting that
dl changes sign on opposite sides of the waveguide (Fig. 9),

Koy =} [[ax[T(y=b) - T.(y=0)]

1 [@[1(x=a)-T,(x=0)] (A9)

+ 6x

de,,
= jAB,.enx 1)y (A10b)
dx Y

The derivatives of 6x and 8y with respect to z in (A6)
have been eliminated by using the following equation,
which is valid for coupling between modes with different
propagation constants 8[12]:

" 4d

== 0~ JAB,,.

o (A11)
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The coupling factors from (A7), (A9), and (A10) are still
quite general, and can be used for E and H plane bends as
well as for twists. By replacing 8,z by /B, dz everywhere,
the coupling in smooth rectangular waveguide tapers can
also be handled with these equations.

For rectangular waveguide twists, we have (see Fig. 9)

a a8y
8y = (x——2—)0 S on y=0,b (Al2a)
b déx
8x=(5—y)0 ‘gz—a onx=0,a.(A12b)

Substituting these expressions into (Al0) along with the

expression for the fields of normal modes carrying unit

power, we can obtain from (A9) the coupling factors.
Here we define

P,=B,/k k=2m/A=2nf/c  (A13)
R=a/b (A14)

and
0'=df/dz. (A15)

The modes are coupled by the change in the twist angle
rather than by the twist angle @ itself, since if 8 were
constant we could always rotate the coordinate system to
make 6 =0 again. Hence we have made use of the equiv-
alence in (All) again to write the following coupling
factors in terms of 8’ instead of 6.

In general, there is no coupling between modes due to
twist unless the modes have opposite parity in both in-
dices. That is, in the following,

K, +#0onlyif p+rand g+ s are both odd. (A16)

For coupling from TE, (m) to TE, (n), we have, when
(A16) is satisfied,

K, =—(Ko/D)(P,+ P} (N + N, N;)0" (A1)

where
Ko=(8/7?) (A18)
D= (B, R(P = 2 (5=’
'(P2+R2q2)1/2(r2+R2s2)1/2 (A19)

N, = (p>+ R%*)(r*+ R%?)(q%r* - p%?) (A20a)

N,=r??—p’q® (A20D)
N, = pr? — Riq%2 + R*(p%® — q*r?)
(P, = P)/(P,+ P)] (A20c)
€m™ {i gtll:efvrviZe ’ (a21)
and similarly for €.
For coupling between TM , (m) and TM,((n),
K,,=2K,/D) pgrsN, N6’ (A22)

where

N,=P,(p>+R%*)+ P, (r>+ R%?) (A23a)
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and
Ny=R*(s*—¢q*)—(r*—p?). (A23b)
Finally, for coupling between TE, (m) and TM, (n),
K, = 2Ky /D) Rrs|Rp*(s> = *)+ ¢*(r* = p*)'] 0"
(A24)

Notice that the coupling factors K, in (A17) and (A22)
change sign under interchange of modes: men, por,
g <> 5. This is consistent with power conservation, which in
the absence of significant ohmic loss requires

K,,=-K*. (A25)

In the present case, all the K, are real. A separate
derivation of the coupling factor for coupling from
™, (m) to TE,(n) demonstrates that (A25) holds for
the K, in (A24) also.

For the simplest coupling, from TE; to TE,,
(Pm + Pn) KOH/

" (B,P)” 2

When both modes are far above cutoff, P,, and P, both
approach unity, and K, ,= K.0’, which is independent
both of waveguide size and of frequency. Similar situations
hold for twist coupling between other modes (see Table I).

For comparison with other work, we note that (A26)
agrees with the result of Katsenelenbaum [3], who derived
the twist coupling between these two modes only.

Marhic [4] derived the twist coupling factors between
any two modes, assuming that they were all far from
cutoff. However, in his result for TE,_ to TE, coupling,
the normalization factors ¢, =2 and ¢,=2 for TE , or
TE,, modes are missing. Furthermore, he obtains no cou-
pling at all between two TM modes. Otherwise, Marhic’s
results agree with (A17) and (A24).

An alternative derivation of the coupling coefficients
may use the generalized telegraphist’s equation approach
[13]. In this approach, Maxwell’s equations are converted
to the form

. TE,-TE,. (A26)

dav,
—m_ = Tmme + Z Tan;l - ijZmIm (A27a)
dZ n¥*m
dl,
— =Ll L Tl = B/ 2, (A2TD)
Z

n#+m

where the Z,, are the modal wave impedances
Z,=2Z,/P, (TE modes) (A28a)
Z,=Z,P, (TM modes). (A28Db)

Z, is the impedance of free space, and the 7, can be

written in terms of integrals over the waveguide cross

section. A
By defining the traveling wave amplitudes,

we find that (A27) can be written in the form of (A7) if we
neglect reflections (we assume the B8, are independent of
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Fig. 10. Schematic of transmission through an overmoded waveguide
with a mode converter that generates trapped modes.

z). The AL in (A29) are the same as in (Al), and the
forward coupling coefficients K, ,= K, are related to the
T,, in (A27) by

K= [(2,/2,) T —~(2,/2,) /T3] /2. (A30)

We could also include reflections terms; to calculate the
coupling coefficients K, for reflection, replace the minus
sign in (A30) by a plus sign.

Now let us consider the relationship of the above results
to those in Yabe and Mushiake [7]. When an incident
mode m =1 undergoes no reflections, we have 4;” =1 and
V,/I, = Z,. Combining (A29) corresponding to m =1 and
m = n, we obtain

Ax=(z,/2,)"V, +(2,/2,)"°L,] /2 (A31)

n

where
v.=V,/V,
IL=1/I. (A32)

Let us identify m =1 with TE,, and n with TEy. ¥, and
I, can then be obtained as the modal expansion coeffi-
cients for the dominant hybrid mode in a uniformly twisted
rectangular waveguide. From Table 1 of Yabe and
Mushiake’s work [7], after some rewriting, we have
Voo =2P{W
Iy = (Pj+ PR)W (A33)

where the normalized propagation constants P, and Py,
are as in (A13), and

w=— j(8/72)0'[kP,,(PE - P3)] .
From (A28a) and (A31), we then have
A(;_rl = j0’(4/772)[(P10 * P01)/(P10 + Pm)]

[k (PuoPa) ] (A35)

In view of (3) and (A18), we find from (A35) that the
forward coupled TE,, amplitude obtained from [7] is

Agy == jKp /BB,y (A36)

where K, , is the forward coupling factor for TE, to TE,

coupling given by (A26). The magnitude of the coupled
TE,; mode calculated in this way agrees with the magni-

(A34)
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Fig. 11. Scattering matrices corresponding to the situation in Fig. 10.

tude of forward coupled modes in uniformly coupled
overmoded waveguides given by Unger [14]. Expressions
for the amplitudes of the TE,;, TE,;, and TM,, modes
could be obtained similarly from the modal expansion
coefficients given in Yabe and Mushiake [7].

Hence we have shown that deriving the coupling coeffi-
cients in the manner of this appendix is equivalent to the
modal expression technique of [7].

APPENDIX II
DETERMINATION OF MODE CONVERSION IN AN
OVERMODED WAVEGUIDE COMPONENT FROM
MEASUREMENTS OF RESONANCE LOSS IN A
TRANSMISSION MZASUREMENT BETWEEN
FUNDAMENTAL WAVEGUIDES

Consider the experimental situation shown schemati-
cally in Fig. 10. An oversized waveguide is connected at
both ends by mode transducers and/or tapers to single-
mode waveguide. A mode converter is located somewhere
along the oversized waveguide, and we consider for the
purposes of this analysis that the converter’s effect is
localized at a point.

Mathematically, we can model the arrangement in Fig.
10 by blocks i =1 through 5 in Fig. 11, each with scatter-
ing matrix S,. If we assume that the mode transducers and
tapers connecting the single-mode and oversided wave-
guides are ideal, then there is no mode conversion or
reflection associated with S; or Ss. The case where mode
conversion does occur at both of these points was consid-
ered by King and Marcatili [15]; they did not consider a
single mode converter located somewhere along the over-
sized waveguide. Klinger [16] refined this analysis for the
case where an oversized waveguide is terminated in a
short; the unfolded schematic shown in Figs. 10 and 11
(without the mode converter at i =3) then can be used
provided that S; and S; both represent the same mode
transducer /taper under test. In any case, our assumption
of ideal mode transducers/tapers can be checked experi-
mentally prior to the insertion of the mode converter at
i =3 by checking that there are no significant resonances.

For ideal mode transducers/tapers, we have

0 1 0
Sl=S5=[1 0 0} (A37)
0 0 1
[6,,]=5[a,] (A38)
and
[6,,]=5S;[a;,] (A39)

where the matrices represented in brackets are column
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matrices
ay

la,]=|%], ete.
a,

(A40)

The blocks i =2 and i =4 represent lengths /;, and /,,
respectively, of ideal oversized waveguide; thus at i = 2,

4, 0 e /* 0 0 B,
a, e /h 0 0 0 b,
= A4l
4, 0 0 0 e /% || B, (A41)
42 0 0 eV 0 |Lb
where
jé,=T,0,, n=12 (Ad2)

represent the propagation factors of the desired (n=1)
and unwanted (n = 2) modes, respectively. The situation at
i=4 is the same, except that all the elements in the
matrices of (A41) are replaced by primes, and

Jo, =TIz, n=1,2. (A43)
Finally, at the mode converter i = 3 we have
B, 0 7, I T,||l4
B I, 0 T, T {4
1 = 0 3 L 1 ] ( Ad 4)
B, T, I, 0 T,||4,
B; T, T, T, 0|4

Here we have assumed that the converter is symmetric
and also does not generate reflections. Far above cutoff in
oversized waveguide, the reflections are ordinarily totally
negligible. We accordingly also neglect reflection coupling
between modes:

T, =0. (A45)

Further, from the requirement of power conservation in a
mode converter with no ohmic dissipation, we have

I,=-T}* (A46)
(compare the analogous statement in (4)),
T,=T,* (A47)

(see the perturbation solutions (119)-(120) of Rowe and
Warters [17]), and finally

ITol? =1~ T, (A48)
(see Fig. 11).
To solve for the transmission
T=b}/a, (A49)

we first solve successively for b} in terms of a{, B{, 4;
and A,, b, and b,, and finally a, and a, by working to
the left in Fig. 11 using (A37), (A41), and (A44). Then a,
is written in terms of a} by working to the right in Fig. 11
(ay,=0), and a} is in turn written in terms of a, and a,
by working to the left. Hence @, can be solved in terms of
a, alone, and substitution in the expression for bj previ-
ously discussed yields b} in terms of a, as desired. If we
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write
IT| = e “HT,||F| (AS50)
where
L=1,+I, (A51)

a, L being the one-way attenuation of the desired mode
and the quantity F describing the resonance behavior, then

2|T,°E

e T TE

Flu . 2ALIE (452
1-E

where

E=exp(—a,L) (A53)
represents the one-way attenuation of the unwanted mode.
In deriving (A52), we have assumed that |T,)> < 1. (|T,|? is
the relative power converted to the unwanted mode in one
pass of the mode converter when all of the power is
initially in the desired mode.)

Note that if there is little ohmic loss for the unwanted
mode, the resonances can become very deep. In fact, in the
limit of a, =0, E =1, |F|2;, goes to zero for all values of
|T,|?. When a, L is small, (A52) becomes approximately

|F| 2 T2\
—= |1+ , a,L<1. (A54)
lFlmdx a2L

This highlights the importance of the ratio of the one-way
mode converted power |T,]? to the one-way attenuation of
the unwanted mode.

The resonances where F= F,_; occur at very fine inter-
vals when the length L is large compared to the guide
wavelength of the unwanted mode [15]. The resonance

condition is

B, L = ma + const, m integer (A55)
where the complex propagation constants in (A42) are
=, 1 jB,, n=1,2. (A56)

If the length of oversized waveguide is very long, however,
so that a,L becomes large with respect to unity, then
|F|2. /|F|%.. also approaches unity, showing that the
resonances have been smeared out. That is, the “Q” of the
cavity in Fig. 11 has become very small.

To determine the mode conversion |7,|* from a mea-
surement of the loss resonances using (AS52) or (A54) and
(A53), the loss a, L of the unwanted mode in the oversized
waveguide “cavity” must be known. If the loss a; L of the
desired mode can be measured, and if the “cavity” length
L is large enough that the losses in the oversized wave-
guide are large compared with the losses in the mode
launchers and/or tapers at each end, then a,L can be
estimated from e, L using the formulas for attenuation of
various modes. Deviations from ideal surface resistivity
should make the ratio of actual to theoretical attenuation
the same for both modes.
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Alternatively, the loss resonances can be compared with
those of a “calibrated” mode converter. For example, the
mode conversion from TE,, to TEy in an abrupt twist of
(small) angle change Ad is just |T,| = K, A8 = (8 /m*) Af.
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